Defective Fas expression exacerbates neurotoxicity in a model of Parkinson's disease
نویسندگان
چکیده
Fas (CD95), a member of the tumor necrosis factor-receptor superfamily, has been studied extensively as a death-inducing receptor in the immune system. However, Fas is also widely expressed in a number of other tissues, including in neurons. Here, we report that defects in the Fas/Fas ligand system unexpectedly render mice highly susceptible to neural degeneration in a model of Parkinson's disease. We found that Fas-deficient lymphoproliferative mice develop a dramatic phenotype resembling clinical Parkinson's disease, characterized by extensive nigrostriatal degeneration accompanied by tremor, hypokinesia, and loss of motor coordination, when treated with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) at a dose that causes no neural degeneration or behavioral impairment in WT mice. Mice with generalized lymphoproliferative disease, which express a mutated Fas ligand, display an intermediate phenotype between that of lymphoproliferative and WT mice. Moreover, Fas engagement directly protects neuronal cells from MPTP/1-methyl-4-phenylpyridinium ion toxicity in vitro. Our data show that decreased Fas expression renders dopaminergic neurons highly susceptible to degeneration in response to a Parkinson-causing neurotoxin. These findings constitute the first evidence for a neuroprotective role for Fas in vivo.
منابع مشابه
The effects of anti-Fas ribozyme on T lymphocyte apoptosis in mice model with chronic obstructive pulmonary disease
Objective(s): In this study, we aimed to investigate the effects of anti-Fas ribozyme on the apoptosis of T lymphocytes (T cells) in mice model with chronic obstructive pulmonary disease (COPD). Materials and Methods: Male 6-week-old C57BL/6 mice were used to establish the COPD model by exposure to cigarette smoke. The COPD mice were sacrificed for spleen dissection and T cell isolation. T cell...
متن کاملEvaluation the effect of analog curcumin on the display and expression of SIRT1 and FAS genes in HepG2 fatty cells.
Abstract: Background: Non-alcoholic fatty liver is a disease that will lead to liver cirrhosis if not treated. Curcumin is the active substance of the rhizome of the turmeric plant, which has antioxidant, anti-inflammatory, antimicrobial, etc. properties. In the present study, the effects of curcumin analogue on the expression of SIRT1 and FAS genes and the accumulation of triglycerides in f...
متن کاملNeuroprotective effect of topiramate against 6-hydroxydopamine-induced cell death in Parkinson's disease cell mode
Introduction: Parkinson's disease (PD) is a common neurodegenerative disorder characterized by progressive neuronal dysfunction. Growing evidence has shown that oxidative stress plays a crucial role in the pathogenesis of Parkinson's disease. Correspondingly, the current study evaluated the protective effect of topiramate in 6-hydroxydopamine induced oxidative stress and apoptosis in PC12 cells...
متن کاملMelissa officinalis aqueous extract ameliorates 6-hydroxydopamine-induced neurotoxicity in hemi-parkinsonian rat
ABSTRACT Background and Objective: Parkinson's disease (PD) is an age-related neurodegenerative disorder with massive loss of dopaminergic neurons in the substantia nigra pars compacta. L-Dihydroxyphenylalanine (L-DOPA) substitution is still the gold standard therapy for PD. However, there has been little information available on neuroprotective and regenerative therapies for PD. Due to the neu...
متن کاملA Drosophila model of mutant human parkin-induced toxicity demonstrates selective loss of dopaminergic neurons and dependence on cellular dopamine.
Mutations in human parkin have been identified in familial Parkinson's disease and in some sporadic cases. Here, we report that expression of mutant but not wild-type human parkin in Drosophila causes age-dependent, selective degeneration of dopaminergic (DA) neurons accompanied by a progressive motor impairment. Overexpression or knockdown of the Drosophila vesicular monoamine transporter, whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Experimental Medicine
دوره 202 شماره
صفحات -
تاریخ انتشار 2005